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We investigate the nonlinear spectral behavior of high-current Compton free-electron lasers. For that
purpose, a multifrequency model is developed in the continuous-beam limit. Both numerical simulations
and perturbation expansions allow us to point out a mechanism leading to a broadening of the spectrum.
Then, we analyze the saturation and the asymptotic behavior of the spectrum corresponding to a large
number of round-trips in the oscillator configuration. The existcnce of a stable asymptotic regime
presenting strong chaotic features is predicted. In this regime, efficiency is provided by a diffusionlike
behavior of the electrons rather than a standard synchrotron motion. Consequently, we show that the
efficiency and the spectral width can be evaluated simply and in closed form: they behave like the square
roots of the electron density, of the wiggler length, and of the cavity quality factor.

PACS number(s): 41.60.Cr, 52.35.Mw, 52.35.Ra

I. INTRODUCTION

High-power Compton free-electron lasers (FEL’s) are
characterized by very involved nonlinear behaviors, lead-
ing to saturation and eventually to equilibrium. The un-
derlying physics belongs to a wide class of problems in-
volving couplings linear in the radiation field and period-
ic in the electron positions (intermodulation in traveling-
wave tubes, Langmuir waves in plasmas [1], etc.). How-
ever, these phenomena are mainly understood in the
linear low-field and low-gain regime (the Madey regime
for FEL’s, the quasilinear regime for Langmuir waves,
etc.). In a previous Letter [2], we pointed out two results
about the nonlinear regime. First, by computing in
closed form the third-order term in a perturbation expan-
sion, we showed how new frequencies appear in the FEL
spectrum. Second, by using a full numerical simulation,
we characterized the asymptotic equilibrium by a scaling
law exhibiting a universal ratio between the extracted
efficiency and the relative spectral width. The present pa-
per goes further by presenting a more detailed analysis of
the perturbation expansion and an interpretation of the
asymptotic equilibrium leading to simple evaluations of
the efficiency and spectral width.

The model we use (Sec. II) describes the spectral dy-
namics around a fundamental frequency with a restricted
two-dimensional (2D) analysis. Since the nonlinear mul-
tifrequency physics is expected to provide very intricate
behaviors, we will also briefly describe the computational
scheme.

Through several perturbative expansions and simula-
tions, we study the nonlinear coupling of an arbitrary
number of longitudinal modes (Sec. III). This allows us
to recover well-known processes, such as saturation or
mode competition [3]. But we also observe other cou-
plings, involving three or more longitudinal modes.
Among these is a process which can be called difference-
frequency generation (DFG) and is identified [2] as a
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source of new spectral lines. We characterize this mecha-
nism within a third-order perturbation expansion com-
puted in closed form. Then, with the help of numerical
simulations, we verify that the DFG mechanism, starting
from two or more strong laser modes, leads to a broad
spectrum. Thus we sketch out a scenario where, starting
from the well-known ‘‘fundamental-plus-sideband” situa-
tion, we finally get a broad spectrum. A more detailed
analysis of the sideband instability and its relations to
spectral broadening, including the effects of tapering, is
presented in the following paper.

In the oscillator regime, full numerical simulations
show that, beyond the spectral broadening due to the
DFG, an asymptotic equilibrium takes place character-
ized by a spectral width much larger than the one pre-
dicted by the sideband instability (Sec. IV). This steady
state is reached after a large number of round-trips, de-
pending of course on the FEL parameters. We observe at
saturation a proportionality between the spectral width
and the extracted efficiency, which is consistent with
high-current experiments [4,5]. Of course, such con-
siderations are relevant as far as there is no frequency
discrimination (filters). To get more insight into this
asymptotic behavior, we analyze the stability of this equi-
librium against various perturbations such as diffraction
effects and tapering. The broad-spectrum-regime equilib-
rium appears to be very stable. Finally, we clarify this
universal behavior by investigating the electron dynamics
in a broad spectrum laser. By using a simple Fokker-
Planck description, we predict the performances of high-
power FEL’s versus electronic charge, wiggler length,
and cavity losses. The laws describing this regime are
very different from the usual laws relevant for the stan-
dard monochromatic-laser regime [Eq. (41)]. These re-
sults are of practical importance since they show that the
FEL efficiency can be made typically one order of magni-
tude larger in the broad-spectrum regime than in the
monochromatic regime.
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II. MODELING AND NUMERICAL SCHEME

The paraxial approximation makes it possible to model
the electric field of a FEL by a complex field satisfying a
time-dependent Schrodinger equation, where the elec-
tronic current acts as an inhomogeneous source term.
We describe radial effects in a simplified way by coupling
a 2D laser beam to a 1D cylindrical electron beam with a
static radial profile [6]. Numerical simulations based on
this mixed 1D-2D model conserve energy and take into
account guiding effects with moderate computer CPU
time, for example, by expanding the laser field on a finite
radial basis [7]. Then, it is possible to address the spec-
tral dynamics by expanding the 2D laser field over a
discrete sequence of longitudinal modes.

We study FEL spectral dynamics in the continuous-
J
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where A, =2 +8§ is the transverse Laplacian operator,
y is the kinetic energy of electrons normalized to mc?,
ay is the normalized wiggler magnetic-field amplitude
and ky, its wave number, %, is the usual coupling param-
eter [9], and T'(r) is the electron-beam profile which is as-
sumed to be constant and normalized according to
[2mrdr T(r)=1.

The longitudinal electronic phase space is character-
ized [10] by the resonant phase y=(k, +k, )z —ck,t and
the kinetic energy y. The variable ¥ depends on the cen-
tral wave number k;, but the dynamical equations are in-
variant under the choice of k; when we consider the lim-
it of the continuous Fourier expansion in Eq. (1). Indeed,
the phase

ba=

n n _ _
1+N ¥ Nsz——(kw+k,,)z ck,t, (3)

appearing in Eq. (2) is precisely the resonant phase for
the wave number k,. The longitudinal electronic distri-
bution g(z,,y) satisfies the associated Vlasov equations:

3, +vd,+T ay—i g(z,4,7)=0, “a)
kp al%V

V=kw"‘ 2 1+—2'— , (4b)

I'=a,% Im S Rpiexpliv,1/v |, (4c)
m (<<N)

and is normalized according to

1 27N + o0 _
y— fo d:ﬁfl dy glz,¥,y)mc=p, . (4d)

The density p, is the electron number per unit of length
and R, is the radial self-consistent overlap between T
and &6, i.e., the averaged laser field seen by the rigid ra-
dial section of the electron beam:

L 2™ gz, 9,7 Lexpl =i, 1/ @

beam limit which is relevant for electronic pulses much
longer than the slippage distance [8]. This means that
finite-pulse issues, such as natural Fourier spread or tem-
poral overlap effects, are disregarded. The laser field 4,
is expanded as the product of rapid phases and slowly
varying envelopes 6 ,(r,2):

ALZ_VZC;RC 2 6nl((ryz)eikn(z—ct) ,

n (<<N) n

(1)

where m and —e are the electron mass and charge, and r
is the radial distance from the z axis. The wave number
k; is an arbitrary reference and k,=(1+n /N )k is as-
sumed to be close to the central mode k; (n <<N). Each
complex laser field &, satisfies a paraxial equation result-
ing from the Maxwell equations:

R(2)= [2ar dr T(1)6,(r,2) . (5)

The overlap 7, can be interpreted as a self-consistent
filling factor, the evolution of which takes into account
the competition between diffraction and optical guiding
effects [7,11]. This partially 2D model is valid when the
electron-beam radius is smaller than the laser-beam ra-
dius, which is a relevant assumption in our experiment
[12]. This approximation is a projection, which implies
energy conservation for the above set of equations. If E,
and E; are, respectively, the electron and laser energies
per unit of length, the sum E, + E; is constant:

_ 1 2aN + oo 2
E, mczﬂNfO dl/lfl dy g(z,¢,y)mc?y ,
1 Pt
. .’lc_ ® *
Ei=5 -7 fo 21rrdr§6,,6’,,.

The transverse Laplacian operator induces time-
dependent phase shifts for each mode. For realistic pa-
rameters, these phase shifts vary slowly compared to the
phase shifts due to longitudinal dynamics. Therefore, the
major effect of the transverse dynamics is a geometrical
effect described by the self-consistent filling factor. To
make some complicated calculations more tractable, a
1D projection of the 2D dynamics is derived in the Ap-
pendix.

The term (1/7)g in Eq. (4a) is required for the conser-
vation of the phase space volume and for the equivalence
with the Newton equations:

dy=v, dy=T. (6)

This extra term can be exactly removed and the electron
dynamics be made Hamiltonian by merely changing the
phase-space coordinate ¥ into y2.

In fact, the models usually used for multifrequency
simulations [13,14] work in position space [14], possibly
with periodic boundary conditions [8,15,16]. In the limit
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of continuous Fourier expansion, Eqs. (1)-(4) are physi-
cally equivalent to these models. The Fourier representa-
tion is well suited for the study of multifrequency mecha-
nisms both for theoretical purposes [17] and numerical
purposes since it allows a fine control of the initial spec-
trum and a precise tracking of each frequency. The laser
field is expanded as a finite sequence of discrete Fourier
modes so that the whole model Egs. (1)-(4) is periodic
with a period NA; and the minimal distance between two
laser wave numbers is 6k =k; /N. Typically, by using
50-100 modes with N =500, we resolve spectral details
with relative fractional widths > 107> and within a band-
width of few tens of percent (this must be compared with
a sideband shift of a few percent).

To investigate new frequency generation mechanisms,
it is necessary to perform simulations relevant for very
low-amplitude fields. Two different issues have to be ad-
dressed.

First, a precise control of the total energy conservation
is required to check that each electron trajectory is
correct. To constrain the total energy conservation in
simulation (simulation computer code SPECTRE) within
the working precision of the computer, up to three or
four digits, we have taken advantage of a basis expansion
technique [7]. Then, by diagonalizing the Laplacian
operator A, it is possible to compute the unitary evolu-
tion operator U(z)=exp[iA,z /2k]. We use this operator
to define an interaction representation &= U(z)§ for the
electric field. Then we push particles and § with a
fourth-order Runge-Kutta scheme. The order of this al-
gorithm is 4 since (i) we use an exact free evolution opera-
tor and (ii) the nonlinear part is treated by a fourth-order
Runge-Kutta algorithm. This method is comparable to
second-order algorithms used for solving time-dependent
Schrédinger equations in nuclear physics [18].

Second, laser frequency generation is relevant or not
depending on the statistical properties of the numerical
sampling. Let us consider W, electrons equally spaced in
a 2N phase space. Depending on the ratio N, /N, some
electrons can get very close to a separatrix in the phase
space. In that case, the status of this electron can change
easily from bound to unbound. This generates localized
perturbations of the order 1/N,, which means in the fre-
quency space a white noise. A precise control of noise al-
lows an important cross validation between numerical
simulations and perturbative calculations and also gives
the opportunity to extend the analytical analysis into a
more complex and realistic investigation.

This second point is the key issue of multifrequency
simulations. When the laser spectrum is simple enough
(for example, when it is characterized by one or two dom-
inant modes), it is possible to control precisely the noise
at a level comparable to the computer precision. This
can be achieved by optimizing the initial electron sam-
pling along the v axis, i.e., the distribution of the N,
equidistant particles in a 27N long box. This can be illus-
trated when there is a dominant mode, say k;. The equa-
tions are basically 27 periodic. Moreover, if m, is the
highest common integer factor of N, and N, the sampling
of the initial condition, and then the whole dynamics, is
27m periodic where m =N /m,. This implies that any

noise mechanism will generate a modulation with wave-
length smaller than 27m, which means wave number
shifts larger than Ak /k =1/m =m/N. In that case, we
observe noise generation at the wave numbers
k;(1+nm/N) with n=1,2,.... So by increasing the
symmetry of the initial sampling, we push the noise out-
side from the considered spectral bandwidth (m, larger
than the number of simulated modes). We have success-
fully used this technique to test the DFG where two ini-
tial dominant modes are initially present (see Sec. III,
Figs. 1 and 4). This technique can be generalized when
three or more frequencies are dominant but the resulting
N, increases dramatically. Then, it is not possible to
make use of this simple arithmetic rule to prevent noise
generation in the most general case. Moreover, at satura-
tion and for a broad laser spectrum, the potential seen by
the electrons is very complicated: it is the sum of many
periodic potentials with time-dependent relative phases.
This induces a high sensitivity to initial conditions.
Therefore, it is not relevant to focus on precise details of
the spectral evolution and we will chiefly analyze mean
values such as the efficiency or the spectral mean square
width (see Sec. IV).

III. PERTURBATIVE ANALYSIS
OF THE SPECTRAL BROADENING

Nonlinear couplings occur when the laser field, or the
periodic modulation of the electronic distribution, be-
comes strong enough. In such a case, the evolution of
laser modes differs from that given by the linear gain
curve. The most common illustration of these nonlinear
effects is the self-saturation of the fundamental mode.
This situation also occurs with the sideband or trapping
instability [10] due to the synchrotron rotation of elec-
trons. A large part of the following paper is devoted to
the analysis of this instability in a realistic spectral evolu-
tion.

Moreover, one can expect that any beating wave, re-
sulting from a linear combination of laser frequencies,
can itself be amplified if it corresponds to an excitable fre-
quency of the system. For example, the electronic distri-
bution, when modulated by several laser modes, generates
source terms containing combinations of these modes.
New modes can be either amplified from noise or created
from a zero-energy level. This section is devoted to an
analytical analysis of these processes. Since the following
computations are quite intricate, we assume that
diffraction can be switched off, and we consider Gaussian
beams in the 1D limit (Appendix). Radial profiles are
frozen: T(r)=exp(—r?/r2)/mr2 for the electronic beam
and S(r)=exp(—r?/2r})/(wr{)'’? for the laser beam.
Equations (2) and (4c) become

8, y=T=a, K (ST)mr})"Im | 3 6, expliv),) /27 | ,
(7)
2

IS, Hoe .
1626,,ZTawﬁlne(exp(—ldI")ﬁy) , 8

where n,=p,/7r? is the electron number per unit of
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volume at r =0 and &,(z)=§6,(r=0,z) is the value of the
2D laser field (Sec. II) on the axis. The mean value { ) in
Eq. (8) is defined with the electronic distribution g nor-
malized by Eq. (4d). This 1D limit is valid when the
phase shift L, /2r2k; induced by the radial Laplacian
operator is small compared to 1. In this section, we as-
sume for simplicity a perfect radial overlap between the
electronic density and the laser field, that is, we limit our-
selves to r2=2r}. In this case, one has
(ST)(mr2)\2=1.

The origin of the frequency generation by a direct cou-
pling of laser modes can be clarified within perturbation
theory. By giving in a closed form an explicit calculation
up to the third order, we will exhibit mechanisms for
mode coupling which are clearly responsible for the spec-
tral broadening. To begin with, it is necessary to fix the
formal frame of this perturbative expansion. Indeed, to
make the analysis tractable, two small parameters are re-
quired: the electron density and the electric field . This
comes from the fact that the source term for the Vlasov
equation (the Maxwell equation) is given by the laser in-
tensity (the electronic density). This well-known struc-
ture of the Vlasov-Maxwell equations allows us to sketch
out the structure of the expansion. Then, we will focus
on terms in the weak-current limit (first order in the elec-
tronic density) and in the low-field limit (up to the third
order in the laser field). This means that we provide the
explicit formula that generalizes the Madey gain theorem
[19]. This will be relevant for weak electronic currents or
for short undulators. Comparison with full simulations
will give the validity range of this third-order approxima-
tion.

To label the different orders of this two-parameter ex-
pansion, we introduce a double index (i, j), where i is re-
lated to the electronic density and j to the laser strength.
For any perturbation order (i, ), we can define the elec-
tronic density, the laser field, and the driving term of the
Vlasov equation, respectively,

g(i,j) , éa(ni,j) , r(i,j) . (9)
By definition, at the order i =0, there is no electron,
which implies g'>”=0 for any j. In the same way, the
zero order in the laser field means that 6(°?'=0, so that
r%9=q, for any i. Moreover, when there is no electron
i=0 (no photon j=0), the laser field (the electronic den-
sity) does not evolve, which means that 6>/ (g“%) are
constant and are given by the initial conditions. These
constants are zero for i or j strictly greater than 1, be-
cause in the absence of interaction, the high-order terms
are meaningless. This simple analysis provides the initial
values for the following general recursion law deduced
from the Vlasov equation Eq. (4):

(3, +vd,)g)=— 3 w9 |a —L |gi-ri-9
0<p<i Y
0<g<j
1 i
__F(O,l) 9. —— g(l,j 1)
Ty
s 1
— 1 1,j) 2 (1,0)
R A (10)

It should be noticed that neither g'*/ nor 6%/ is present
in the summation, so that Eq. (10) allows a direct calcula-
tion of g'*/ by a simple integration. Knowing g‘*/, one
can then deduce 6'* by another integration over the
wiggler length L

2
o pee“ca,HH
o el — 0% PPwrh
i9,6,0'= "
+ o0 1 27N P i 1
X dy—— dy gz, ,y)—
f1 Youn do Y& EHYIS

Xexp(—iy,). (11
The driving force is then deduced from Eq. (7):

F“‘j’=aw7{1/21m[2(§°(,,i’j)exp(i1/},,)/27 NG

The initial condition is a monoenergetic uniform infinite e
beam:

(1,0)

1
=—0 8(y— (13)
g e Pe (ry —70)

and an initial laser energy split in several modes &'
with n€{n,,...,n,}. At the first order, we get the
weak-field, low-gain, amplification rate:

3,6 (2)=x,(2)6'>1(0) (14)
with
e? 1 i(n/Nok,z
Xy =~ pog —au¥in, Pl
1 n z
X | 5rbnth, |1+ fodz1¢,, ,
e—i(n/N)sz_l
¢,(2)= :
.n
"‘lﬁkw

By direct integration, we get the usual Madey formula
[20] for the weak-field and low-gain limit:

sin’p
pe

with
I=p(e?/16m)alFn,(1/y)k, L, @=voL,/2 .

At second order, there is no resonant contribution close
to the initial frequencies (the smallest resonant frequency
will be close to the second harmonic of the initial modes,
but this is outside the scope of this analysis). The first
relevant contribution appears at third order in the laser
field. At this order, the laser field evolution equation can
be written with a force term, from which the electronic
degrees of freedom are completely removed:
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where U(z,y)=yI'%V 1s readily obtained from Eq. (12)
and V(z,¥)= f Zdz'U(z',v). This lengthy expansion of
the driving forces between laser frequencies exhibits reso-
nant contributions as a sum of products:

626> N2))6,0 * (23)

taken at z;=z,=z;=0. This can interpreted as the
first-order perturbation expansion of a ®* field theory in-
volving a tensor kernel V, ,, , (z,z,,2,,z5) with the fol-
lowing properties: (i) the kernel is nonlocal in time
(z;2); (ii) the kernel is zero for z,z,,z; larger than z
(causality); (iii) the kernel couples frequencies with
n+m=p+q (momentum conservation). The explicit
form of the kernel may be obtained by a functional
derivation of J;, with respect to 6'>'. Hence this
third-order calculation provides an effective interaction
between laser frequencies, obtained by the explicit elim-
ination of the electronic degrees of freedom:

9,63 z)
= > Cvnmpqu Nzy)

X6 z2y) 603 (25) (17)

w1thé’13)( 0)= 6’(0”

The above nonhnear ®* Schrodinger equation governs
the laser dynamics up to the first order in the current.
This illustrates the intrinsic complexity of the coupled
system Eqgs. (7) and (8).

The above first-order term in the current expansion in-
volves a convolution between the kernel V' and laser
fields 6>V assumed to be constant along the wiggler.
Higher-order terms in the current take into account the
variation of the laser field and can be obtained by using,
in the right-hand side term, the value of the field previ-

>

f

ously calculated by solving Eq. (16) at the first order of
the current. The third-order formula Eq. (16) takes into
account different physical mechanisms (all the cases are
listed in Table I): self-saturation, cross saturation, and
difference-frequency generation. In the following, we
focus our attention on the term é’ be O‘”G (0.1 altering
613 following Eq. (16).

The case n =m =p =q corresponds to self-saturation.
The third-order term only describes the beginning of the
gain collapse. However, the comparison with a full nu-
merical simulation (Fig. 1) shows the good accuracy of
the computation with Eq. (16) (the perturbation expan-
sion is evaluated exactly by using a symbolic computer
code written in MATHEMATICA). The variation of the
gain can be described by the third-order theory over a
large range of laser energies (i.e., two decades above the
linear regime). Beyond the quantitative evaluation of Eq.
(16), it is worthwhile to provide a qualitative analysis to
investigate the beginning of the nonlinear regime depend-
ing on the value of the electric laser field. For fields
larger than some threshold &y, high-order terms are re-
quired to describe the FEL evolution. Then, &y gives
the validity range of the Madey theorem. In order to get
an estimate for this threshold between linear and non-
linear regimes, we simplify Eq. (16) by considering two
opposite cases depending on the frequency shift 8k /k be-
tween the spontaneous emission frequency kg, and the
laser frequency k; .

(1) In the first regime, the difference between the
electron-beam energy 7, and the resonant electron energy
Y& 1s much smaller than the resonance width, which
means that we consider electrons trapped in the pondero-
motive potential wells. This condition can be rewritten

L, (8k /k)<<1. Then the phases xz=(8k /k )k,z can
be neglected in Eq. (16), so that fdz explikz)=L,,.
Now, the ratio between any successive nonlinear orders
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(and not only between the third and first orders) becomes
close to unity for

6~ 6y =2m"y3a, K k,L2)". (18)

The electric field &, characterizes the saturation level
since for 6~ &, all the perturbative terms are of the
same order of magnitude. Moreover, we estimate that
the linear regime is valid up to a threshold given by an
electric field ten times smaller than &, so that we define
a second scale &y as the limit of validity of the first per-
turbation order: nonlinear contributions are no more
negligible for electric fields larger than &y;.

Enr =274 a,F k L2) 1~6,./10 . (19)

To put the above expressions in a more intuitive form, we
introduce the synchrotron frequency (assuming a mono-
chromatic electric field 6):

QU E)=6a,H k, /273 . (20)

Now, Egs. (18) and (19) can be simply restated in terms of
the synchrotron pulsation and the wiggler length L

L6 )=1, L QEG)=T. 1)

We get here an expected result since Eq. (21) means sim-
ply that the linear regime is valid when the electrons run
over a small fraction of the synchrotron rotation within
the wiggler length and that the equilibrium at saturation
is reached when the electrons run over a half a period of
the synchrotron rotation within the wiggler length.

(ii) On the contrary, in the second regime, one assumes
that the difference between the electron-beam energy and
the resonant energy is larger than the resonance width.
Here, to get a qualitative estimation of Eq. (16), one may
replace the integrated trigonometric functions by their
modulus, so that f dz exp(ikz)=1/k. This gives a new

saturation level, now depending on 8k /k:

2
/ (a,#,) .

By using Eq. (20), this can be written

n(é;ﬂ)=kw§kﬁ/\/§ .

, S8k
GNLz?’%kw &

So, by using a drive laser to control 6k /k, one would get
a saturation energy which scales as the fourth power of
the frequency shift between the laser frequency k; and
the spontaneous emission frequency kg,. Of course, one
has to take into account the low-field-gain function which
also depends on 8k /k. For example, in the low-gain re-
gime [Eq. (15)], it is well known that the maximum of
gain is obtained for k,(8k /k)L,=2.6. Then, for a fre-
quency at the maximum gain, Eq. (21) gives
Q6 )=1.8/L,. By taking into account the first-order
gain curve, this second regime gives a threshold compara-
ble to 6y and 6, up to a factor 2.

The validity of the above qualitative analysis is
exemplified by Fig. 1. The threshold defined by the linear
regime breakdown (or by the apparition of orders higher
than 3) is in good agreement with the predicted one &y

laser energy (J)

10”7 ; 10 . 107 10 ™
3 I T Ry L1 11ii1l Lol 11 L11ill
1 first order term
| — — — first+third order terms L
1—— mumerical simulation r
] i
[ I
~ 5] i
§ 1 ;
3 - i
D T L
o L
Q] (a) i
8 1 .
N A C
] = i
i } L
c T T T T
10
FIG. 1. Plot of the gain versus the laser energy, or

equivalently the synchrotron frequency. The first-order pertur-
bation term (Madey contribution) gives a constant value. Com-
pared with a full numerical simulation, the third-order term fits
correctly the beginning of the saturation. The areas (a), (b), and
(c) give the validity range of the different contributions and are
clearly connected to the fraction of synchrotron length run by
the electrons through the wiggler.

3 1 | 1 1 1 1 1
-\
é\o
~ i
: /’ \
g SN
Sy -- ! \ L\
N \ / N7
\
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v _ L
3 1
~J
§ L
BE— 12 order term (linear regime)
---- 8% order term (saturation)
-3 T T T T T T L
-6

-3 (] 3
Frequency shift (%)

FIG. 2. Plot of the first-order and third-order contributions
to the gain versus frequency. This provides the generalization
of the usual Madey curve.
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TABLE 1. List of the mechanisms involved in the third-order term of the field perturbation expan-
sion. The first-order term gives the Madey low-gain formula.

Number of pump modes
Case (at third order) 1

Excited mode does not
belong to the set
of pump modes

Excited mode
belongs to the set
of pump modes

n=p=q=m
(three terms)
self-saturation

2 3
pFq, m=p or m=q n=m=(p+q)/2
(six terms) (six terms)
cross-saturation indirect mode
mode competition competition
p=q, n=2p—m n,p,q,m all
(three terms) distinct
DFG (six terms)

(64)- In Fig. 2 we show the first-order [Eq. (15)] and the
third-order gain curves [Eq. (16)]. This simulation is per-
formed with an electric field & corresponding to
L,Q(&E)~3w/4, which is the limit between regions (b)
and (c) of Fig. 1. The effective gain for this value of the
electric field is the sum of the two curves, which leads to
a clear depletion of the maximum gain. This appears
clearly on Fig. 3 where the summation of the first and
third orders is plotted for different values of the electric
field.

The case n=p,q=m (or n =gq,p =m) corresponds to
the cross-saturation phenomenon and involves two modes
that couple together. This can lead to a collapse of the
weakest mode and may explain the sudden transition
from a broad line to a sharp one at the end of the linear
regime. The number of third-order terms contributing to

Laser gain (%)

— 2 -
C—— L, =0 !
L, =282
1o L, = 3.26

«xxxx maximum of linear gain|
|

Al !
— 47 T T T T T T T J

-3 0 3
Frequency shift (%)

FIG. 3. Plot of the sum of the first- and third-order contribu-
tions to the gain versus frequency. The dotted vertical line cor-
responds to the frequency of maximum linear gain. The gain
for this frequency goes to zero when the electric field increases
up to L, (6)~7.

cross saturation (six terms) is twice as large as those of
self-saturation. This may lead to the quick conclusion
that the cross-saturation phenomenon is twice as strong
as the self-saturation [3]. However, the explicit evalua-
tion of these terms shows that this is not generally true.
This comes from the finite range of the effective interac-
tion, which is responsible for a strong frequency depen-
dence of its intensity. Hence an accurate third-order cal-
culation must take into account all the phases due to the
frequency differences. We face here a fundamental
difference with [3] where an approximation of locality in
time is assumed to simplify the evaluation of this third-
order contribution. Such an approximation clearly
breaks down when one deals with sideband modes, which
is stated to be outside of the scope of [3]. Since we inves-
tigate mechanisms involved in broad spectrum regimes
originating from sideband generation, it is essential to
perform a full third-order calculation.

The case p=gq,n=2p —m corresponds to an interest-
ing phenomenon, which can be called the difference fre-
quency generation: two initial modes alter a third one.
This may induce the growth of a new frequency from a
zero-energy level. Since a two-line configuration is very
common, because of the sideband instability, one may
think that this phenomenon plays an important role in
further spectral evolution. This can be made certain with
the help of simulations. For example, one can consider a
one-pass simulation where the fundamental mode and the
sideband (centered, respectively, on k s and k,) are both
present. We assume that the initial laser energy E; is
shared equally between k, and k,. The results of the nu-
merical simulation are essentially given in Ref. [2]. The
low noise level allows us to prove that all the modes 6 ,,
of wave number k,=k,+n(k,—k;), where n is an in-
teger, are amplified. This gives a well-suited interpreta-
tion of the spectrum evolution experimentally observed in
[20], which can be compared with Fig. 1 of Ref. [2]. In
both cases, the fundamental and sideband modes couple
together to generate a DFG mode at the wave number
k;—2(k;—k). For high enough currents, the new
modes k, are amplified and can even dominate the initial
modes k, and k;. In such cases, the new dominant mode
can generate its own sideband k., which couples itself
with k, k;, and so on. A succession of sideband instabil-
ities and DFG mechanisms leads ultimately to the
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FIG. 4. Plot of the energy of the DFG modes versus the
two-pump-mode energy. As expected, the slope of these curves
is 3. The energies are normalized to the energy E, correspond-
ing to L, Qqy,(E,)=m. The third-order expansion is in perfect
agreement with numerical simulations for the pump-mode ener-
gy smaller than E,,.

broadening and the densification of the spectrum. It ap-
pears that the perturbative expansion, compared with
these numerical simulations, is very accurate for realistic
physical parameters, showing that the DFG is not a nu-
merical artifact. In Fig. 4 we point out that the third-
order DFG, compared to a full simulation, is accurate for
laser fields smaller than &,. The E; expansion shows
that the efficiency of the DFG mechanism depends on &,
and k,. In Ref. [2], we have plotted the growth rate of
the DFG, which appeared as a rapidly falling off function
of |k;—k| with a width of a few percent full width at
half maximum. As an essential feature, the present com-
putation takes explicitly into account the frequency
dependence with terms such as exp[i9(n /N)], which pro-
vide the frequency selection rules, and exp[i(n /N)k,z],
which control the intensity of the mechanism. When the
interacting frequencies are very close, these phases can be
taken equal to 1 over the wiggler length. But, dealing
with the fundamental mode and its sideband leads to
k,L,n /N ~m, which requires us to take precisely into
account these phases. This is the case in our calculation
which is relevant to test the coupling between the funda-
mental mode and its sideband.

In general, n, p, g, and m are all distinct. Such terms
are important when the spectrum has many lines, and
they might play a role in the structure of the fluctuations
within the turbulent asymptotic regime. However, their
qualitative analysis is less interesting in our context since
they are not necessary to understand the beginning of the
broadening.

The above analysis rests on a complicated expansion in

the time-varying field variables. Purely time-dependent
perturbation techniques are much more easily imple-
mented: one expands the laser field as a Taylor series in
the variable z, up to the third order. From a qualitative
point of view, this expansion corroborates the above
analysis: the first nontrivial term occurs at third order in
the electric field and the harmonics 2k —k; and 2k, —k;
are amplified. The starting energy growth rate is propor-
tional to z8E?. However, the comparison between this z
expansion and the numerical simulation shows that the
domain of validity of the z expansion is very small (a few
millimeters). The scale of this drastic limitation is the
wiggler period A,,. Indeed, this scale appears in high per-
turbation orders through the variation of the longitudinal
speed of the electrons with their energy d,v. It should be
emphasized that the function vz is a slowly varying func-
tion compared to A, but it is not the case for its deriva-
tive yd,vz~k,z. Therefore, laser field expansions are
the only suitable way to describe mode-coupling process-
es within perturbation theory. This example illustrates
how the relevance of perturbation expansions strongly
depends on the choice of the small parameter.

So, we have provided the effective interaction between
laser frequencies after elimination of the electronic de-
grees of freedom, up to the third order.

IV. LONG-TIME EVOLUTION
AND “UNIVERSAL” BRIGHTNESS

As explained in the preceding section, both perturba-
tive expansions and low-power simulations show that the
radiated spectrum widens following a two-step scenario:
first, the well-known trapping instability causes the emer-
gence of a sideband k; close to the fundamental mode & ;
second, a sequence of harmonics of the difference k - —k;
is generated. This process, which can be singled out
within third-order perturbation theory, is the beginning
of a more complex broadening due to higher-order cou-
plings. Numerical simulations show that the new lines
become as intense as the fundamental line and that they
generate their own sideband instabilities. These new side-
band lines couple with the already present ones, thus
leading to more lines again by third-order frequency gen-
eration. This scenario explains not only the broadening
of the spectrum, but also its densification. At that point,
we have presented a quantitative estimation for the spec-
tral evolution at low laser energy and low electron densi-
ty and a qualitative analysis for the transient regime up to
saturation. We will now study the saturation itself.

Computer simulations give us some insight in the long
time (or large round-trip number) evolution of the spec-
trum. Let us first consider, for example, parameters re-
lated with an experiment [5] dealing with a 10-um laser
wavelength and an electronic current of the order of
J, =200 A. Simulations, assuming various values of J,
and of the cavity quality factor Q, in the continuous-
beam limit, show various evolutions which all converge
toward an asymptotic equilibrium [2]. A low current
leads to a narrow spectrum; for higher currents, the spec-
trum is not only wider, but also more complicated since
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the energy of each given mode is not constant: the ener-
gy seems to switch back and forth erratically from one
frequency to another. Nevertheless, in all cases some
average features of the spectrum, such as the total laser
energy Er or the relative spectral width
=V (k?)—(k)?/k, are quite stable in time. Simula-
tions show that the relative width = at saturation in-
creases with the electronic current J, and the quality fac-
tor Q. Moreover, it appears that the spectral brightness
B, defined as the extracted efficiency per unit of relative
frequency, remains largely independent of the control pa-
rameters characterizing the simulated experiment, as for
example the current J,, the quality factor Q (Fig. 5), or
the wiggler length. While in the narrow spectrum re-
gime, i.e., when the sideband is not fully developed, the
spectral brightness is large and may vary by orders of
magnitude from one case to the other, one always finds in
the broad spectrum regime a spectral brightness of the
order of, or slightly smaller than,

E;

B= 083

~0.8 . (22)

The existence of such a “universal” spectral brightness
means that high currents can make large efficiencies
available, but only at the expense of a proportional spec-
tral broadening.

It is important to note that our simulations have been
carried out within an infinite-pulse hypothesis. There-
fore, the comparison with experiments is valid only if
these experiments have been performed with a large lon-
gitudinal overlap between the laser wave packet and the
electron pulse. Indeed, in a finite-pulse FEL experiment,
the spectral width may be controlled by the slippage
effects and the optical cavity detuning [21,5], since the in-
teraction time depends on the longitudinal overlap be-
tween the two beams. Moreover, the experimental quali-
tative behavior described in [5] is in perfect agreement
with our simulations of the broad-spectrum regime.
Indeed, the laser energy presents an erratic behavior,
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jumping from one frequency to another (see Fig. 3 of Ref.
[2]). Another consequence of the universal brightness is
the reduction of the efficiency when the laser is filtered ei-
ther with some dispersive element [22,23] or via the opti-
cal cavity detuning [5,21]. Up to now, no dedicated mea-
surement of the spectral brightness in the broad-spectrum
regime has been available. But, using the experimental
spectrum provided in [4], one gets a brightness equal to
0.8x0.2, which is in good agreement with our statement
(to obtain this result, we used the measured efficiency
p=1£0.2% and we fitted the experimental spectrum as
the sum of two Gaussians corresponding to the funda-
mental and sideband modes. The deduced relative rms
width is 1.2%). The apparent universality of the spectral
brightness numerical value for the broad spectrum re-
gime typical of high power FEL’s is not only a crucial re-
sult from an experimental point of view, since it implies
that high efficiency is necessarily accompanied by spec-
trum broadening, but also from a theoretical point of
view, since it suggests that there are important charac-
teristics of the FEL dynamics which do not depend on
most of the control parameters. The remainder of this
section is therefore devoted first to a numerical analysis
of the universality of the spectral brightness B in the
broad spectrum regime, and second to its theoretical in-
terpretation.

In order to test the stability of the asymptotic
behavior, we performed various simulations and always
found the same constant asymptotic spectral brightness
B close to 0.8 in the broad spectrum regime.

In our simulation code SPECTRE, it is possible to switch
on or off the diffraction terms due to the transverse La-
placian operator in Eq. (2) and the phase shifts due to the
optical cavity (free propagation outside the wiggler and
reflection on the mirrors). The simulations with or
without diffraction lead to completely different evolutions
of the laser phases. Nevertheless, we observe the same
average spectral asymptotic regime, with the same con-
stant brightness. From a theoretical point of view, this
shows the nonsensitivity of the broad-spectrum regime on
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FIG. 5. Plots of the efficiency p, the relative width =, and the brightness B=p /2 for various cavity quality factors Q. For Q=7,
the losses are large and the spectrum remains monochromatic. The efficiency remains below 1% and the brightness becomes very
large. For larger Q’s, the spectrum broadens and the brightness reaches an asymptotic value B=0.8 independent of Q.
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strong phase perturbations, even though the detailed
shape of the ponderomotive potential experienced by the
electrons crucially depends on these phases.

Another way to try to disturb the spectral evolution is
to inhibit the sideband instability by simulating a strong
absorption around the sideband frequency. We found
that this slows down the growth of new modes beyond
the absorber, so that the asymptotic regime is delayed,
but remains characterized by the same average features.

We also considered the effects of tapering. A tapered
wiggler is designed with a decreasing mangetic field to
enhance the efficiency [10]. Tapering is also expected to
suppress sidebands [24]: an optimized tapering compen-
sates the synchrotron rotation of the electrons in the pon-
deromotive potential well by a displacement of the reso-
nance toward lower energies. Since the sideband instabil-
ity originates from the synchrotron rotation, it is expect-
ed to be inhibited by an optimized tapering. However,
reversing the point of view, the existence of broad spectra
in high-power FEL’s makes the tapering unlikely to be
efficient since in such a regime, it is no longer possible to
consider a simple phase-space structure with a well-
defined resonance. For realistic high-power FEL’s, taper-
ing does not increase efficiency, due to strong spectral
broadening. The only effect of tapering is then to delay
the evolution because of a gain depletion. Thus, despite a
large variation of the magnetic field along the wiggler, we
get the same efficiency and the same brightness with or
without tapering [25]. Such a result has been already
forecasted from theory [26,8], but also experimentally ob-
served [27]. An analysis of this important issue will be
proposed in the companion paper.
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FIG. 6. Plot of the brightness B versus the round-trip num-
ber. The natural evolution for high-power FEL’s leads to the
universal value B=0.8. At the round-trip 600, we disturb the
system by adding a large amount of laser energy on a given fre-
quency, which increases the brightness. The asymptotic equilib-
rium is rapidly recovered.

Finally, we let the system evolve up to saturation and
then induce a strong perturbation of the laser field. For
example, we may spread the laser energy over a broader
arbitrary spectrum or set all the laser phases to zero. In
each case, we observe that the previous equilibrium is
quickly recovered. In Fig. 6, for instance, we artificially
increased the brightness by adding some additional laser
energy on a given mode. We observe that it decreases
back rapidly to its equilibrium value.

We may finally conclude that the system evolves to-
ward a stable attractive asymptotic regime (saturation),
presenting fluctuations around an average state charac-
terized by an efficiency and a spectral width. Our aim is
now to give the simplest possible description of this re-
gime, in order to explain the universality of the spectral
brightness, and to obtain evaluations of its average
characteristics.

Since we consider the system at saturation, the gain is
small (equal to the losses 1/Q, a few percent). Therefore,
for a given round-trip, the laser field amplitudes and
phases may be considered as fixed. Because of the fluc-
tuations, the phases ¢, may be considered as uniformly
distributed and the amplitudes |6,| as centered on a
mean value (|&,|) varying smoothly with n. The wave
numbers k,=(1+n/N)k; range from a maximum
ko~k; to a minimum Kk, (the spectrum broadens to-
ward smaller wave numbers), so that, with a smooth aver-
aged spectrum, the relative spectral width is

1 kL - kmin

2=‘/<k2>_<k)2/kL=2—‘/-:§— X
L

(23)
Just like in Sec. III we will work with a 1D model where
the radial profiles S and T of the electron and laser beams
are frozen. However, we do not assume here that
r2=2r2, so that we have to take into account the filling
factor {ST )= f 2mr dr T(r)S(r). Therefore, the dynam-
ics of the electrons along the wiggler, for a given set of
laser phases and amplitudes, is described by

3, Y=k, (1—vk /7",
293,y =a,H (ST ) (wr})!/?

X 3 |6, |sin

n n
1+F ]lﬁ—ﬁsz“% ] ,

(24)

where 6,=|6,lexp(—i¢,) and y3 =k, (1+1al)/2k, is
the square of the reduced energy resonant with the funda-
mental laser mode. Since we consider a broad-spectrum
regime where the efficiency is much larger than in the
monochromatic case, we can legitimately neglect the
difference y,— Y g between the initial electron energy and
the resonant energy for the fundamental mode: y3~v%.
Each term of the sum in Eq. (24) corresponds to a wave
number k, =(1+n/N)k; and generates a pendulumlike
resonance in phase space, with a squared reduced energy
y% such that the phase (1+n/N)Y—(n/N)k,z—¢, is
constant. This writes, as a mere generalization of the
well-known FEL resonance condition:
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kn
=——(1+a2/2). (25)

n
1+
2k,

Yi=v4 N

The structure of the motion of the electrons in this
column of resonances depends on the field strength [28].
If the laser field were very small, each resonance would
keep its identity, and electrons within the bucket associ-
ated to the nth mode will remain trapped around the cor-
responding energy v,. However, the separatrices of the
buckets are blurred into stochastic layers. The thickness
of these stochastic layers increases as the considered
value of the strength is increased, up to a point where the
resonances overlap and merge into a stochastic column
coming down from y, to ¥p. With 2, =k . (1
+al/2)/2k,. In this regime of global stochasticity, the
electrons are no longer confined in a given bucket. Their
chaotic motion leads to an equipartition all over the
available phase space. Let us now consider the electrons
entering the wiggler when the large spectrum regime has
been reached, due to sideband instabilities and nonlinear
frequency generation. Their total initial energy per unit
of beam length is

E,=p,yomc?. (26)

They experience a chaotic motion which eventually leads
to an equipartition between the energies y, and ¥,
that is, to a total energy per unit of length
%pemcz(ymaxﬁ-ymin). The energy variation for the elec-
trons during their trip along the wiggler is therefore

AEe:%pemcz(’}/min_YO) . (27)

Taking into account the relation Eq. (25) between the
electron energies and the laser wave numbers, and the re-
lation Eq. (23) between 2 and k; —k,;, one obtains

V3

AEQ:—TEQE . (28)
Since the total energy of the system electrons plus laser is
conserved along the wiggler, the laser has increased its
energy by an amount AE; =—AE,=(V'3/2)E,3; fur-
thermore, since we are in the asymptotic equilibrium, this
is just the energy extracted from the cavity AE; =E, /Q,
where Q is the optical cavity quality factor. Concatenat-
ing these simple equalities would lead to the spectral
brightness B=E; /(QE,2)=V'3/2~0.86. Note that,
following this interpretation, the transfer of electronic
kinetic energy to the laser along the wiggler is no longer
due to a coherent synchrotron motion of the electrons in
a ponderomotive potential well, but rather to a chaotic
diffusion toward lower energies. This is why in this re-
gime the efficiency is no more related to the detuning
Yo—Yr (Which we neglect here), but to the spectral
width. More precisely, since the interaction time be-
tween the electrons and the laser is finite (it is given by
the wiggler length), the equipartition between the ener-
gies v, and y .. is not complete at the wiggler exit, so
that Eq. (27) slightly overestimates the electronic energy
loss and only provides an upper bound for the brightness:

E; V3
= < ——=0. s 29
B 0E.> 2 0.86 (29)

which is in agreement with the values issued from exten-
sive numerical simulations. Actually, a complete predic-
tion for B will need to take into account the self-
consistent coupling of the laser to the electrons in the
nonlinear regime, which is outside the scope of the
present paper. However, we can use the fact that a laser
mode k, will be able to grow only if electrons are able to
reach the corresponding resonant energy y, within the
wiggler length. The electrons in the wiggler lose their en-
ergy by diffusion along the y axis in the phase space, un-
der the action of the broad-spectrum potential Eq. (24).
The width of their energy distribution then evolves like
z'/2. Therefore, the electrons cannot couple to elec-
tromagnetic modes resonant with y <y,—pBL /%, where 8
is some constant, that is, from Eq. (25) of wave number
smaller than

1/2

ko =k, |1—28 . (30)

Yo

Therefore the spectral width is controlled by the diffusion
coefficient along the energy axis and by the wiggler
length.

We can make this description more precise by deriving
an expression for the diffusion coefficient around each en-
ergy v. Let us then pick up a given mode » and consider
the resonant electrons with y =~y ,. It is then preferable
to use the variable ¢, [Eq. (3)] for the electron phase, so
that Eq. (24) becomes (with n <<N)

9,y =a, H (ST ) (mr} pe L

2y,

m m
1+W d}n_ﬁsz_(ﬁn%-m

X 36, +,sin

(31

We may first consider that the diffusion coefficient
around y,, depends only on the laser modes resonant with
energies close to y,, that is, with m << N. We can then
replace Eq. (31) by

1

9,y =a, H (ST ) arf)/?—
1 L 27/

n

X 2 |6n +m |Sin wn - %sz_d’n +m
m
We may now use the so-called quasilinear, or random-
phase approximation which states that the dynamics rap-
idly decorrelates the phase 9,, so that it can be replaced
by a uniform random variable W. Then the energy y
obeys a stochastic differential equation:

1
9,y =a,H (ST )(mr} )1/2—27/7

w——’}%sz (32)

X316, ,,lsin
m
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The evolution of the distribution function g(z,y) around
Y. can then be described by a Fokker-Planck equation
[29]:

d,§=39,D0,g

2 . 2
withD(y)=i%zL>=i< fo“dzazy”, (33)

where the expectation value { ) must be taken over the
electronic phase ¥ and over the field amplitudes |&|. Up
to the first order in the spectral width (2 <<N) one ob-
tains a diffusion coefficient proportional to the spectral
energy density of the laser:

TN a H ST 26,12 . (34)

Dly,)= 4k

The asymptotic electronic energy profile g(z,y) does
not depend on the shape of the spectrum: at large z the
distribution will become uniform between y, and ¥,
resonant with k; and k,;,. Furthermore, as long as the
spectrum (|&,|?) averaged on its fluctuations is smooth
as a function of n, the time needed to reach the uniform
final distribution depends very little on the details of the
function D(y). This time is controlled by the first
nonzero eigenvalue A; of the Sturm-Liouville problem
corresponding to the diffusion equation Eq. (33).
This eigenvalue can be estimated [30] by A,
~—?[ [dy D(y)"'/?]%, which is the same as if the
diffusion coefficient were uniform with an effective value
D defined by

D~ \2=(D(y)" %), (35)

where { ) is the mean value of D(y) between 7, and ¥ .
This eigenmode dominates the evolution toward equilib-
rium, since the next eigenvalue A, can be evaluated in the
same way to be four times larger than A,. Up to second
order in the relative variations of the diffusion coefficient,
Eq. (35) can be replaced by D=(D(y)) so that, within
our approximations, everything happens as if the spec-
trum were uniform. This gives, with Eq. (34),

p=" 2(]6 12) .

4k_

a, K ST ) wr})ys? 2‘/32

Introducing the laser energy E; [Eq. (A9) with a Gauss-

ian profile] and the brightness B=E; /(Qy,mc?p,X), we

finally obtain

(a,H,(ST))*
YOkw

__ 7 ,u,oe2
43 m

BOp, - (36)

Now, since the spectrum lies between k; and k,,, the
electrons diffuse toward the lower energies in a stochastic
column which is bounded by vy, and ¥ ;,. The frontiers
of this region behave like reflecting walls so that, between
Yo and ¥, the solution of Eq. (33) is the same as if the
diffusion coefficient were uniform from y = — o to + o,
but with an effective initial condition taking into account
all the images y, of the true initial condition y, by
reflection on these walls. This gives for ¥ i, <¥ <7

2 172 _('V_'}’ )2
ng(z,‘y)=pe Dz vgzexp T ’ (37)
where ¥, =y0+2(¥o— ¥ min) = Yol 1 +2vV'33), so that
V3 V33y,
(Y@ =vo———32ye8 | —— | , (38)
Y Yo 2 Yo (2DZ)1/2
with

2 {exp—(2vu ) —exp—[(2v—1)u ]*}
u

+4v{erf(2vu ) —erf[(2v—1)u ]}

The extracted efficiency is therefore related to the spec-
tral width by

(y(z=L,) 3
y(z )_\/32

P Yo 2

V33y,

(2DL )72 (39

Introducing again the spectral brightness B=p/Z, we
find that

V32,

V73
__g - -
(2DL,,)""?

B=2

(40)

The function §(u) is equal to 1 in the neighborhood of
u =0, decreases, and behaves like 2/(V/7u ) when u goes
to infinity. Therefore the value B=1"3/2 that we found
in the preliminary treatment [Eq. (29)] is actually, as al-
ready stated, an upper limit of the spectral brightness in
the broad spectrum regime.

One may obtain a first rough estimate of the efficiency
by neglecting the fact that the stochastic column is
bounded below at ;.. This can be done in a straightfor-
ward way from the diffusion equation Eq. (33), or more
simply by taking 2= in Eq. (39), so that the extracted
efficiency is

172
1

_7’0

2prL,
o

Taking into account Eq. (36), and, as another approxima-
tion, taking the brightness equal to its limit value
B=V'3/2, the extracted efficiency and the corresponding
relative spectral width are simply given by

p=a(Qp,L,)"?, (41a)
2———(Q L)V, (41b)
with

toe”

yw (@, H {ST))yy 3k, . (41c)
As expected, the extracted efficiency and the relative
spectral width are both proportional to the square root of
the wiggler length. But they are also proportional to the
square root of the cavity quality factor and of the elec-
tron density. Note that the more we close the cavity, in-
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FIG. 7. Plot of the laser efficiency versus the electronic
current. In the monochromatic case (dotted line), the efficiency
is less than 1%, whatever the current. On the contrary, in the
broad spectrum regime, the efficiency grows like the square root
of the charge, so that it should reach 5% for existing devices.
The numerical values for this set of simulations are [12]
a,=1.075, #,=0.9, A, =27/k,=3.2 cm, Y,=33, r, =2 mm,
r,=1.5 mm, Q=25, and L,=1 m. Full simulations are in per-
fect agreement with the scaling law, Eq. (41a), providing, for the
a coefficient a,,,=5.72X107° (broken line). The theoretical
value obtained from Eq. (41d) gives a good estimate:
an=6.12X107? (solid line).

creasing Q, the more we extract energy [14] (see Fig. 5).
Now taking into account the finite spectral width and the
precise value of the spectral brightness, we simply find
from Egs. (39) and (40) that the theoretical value of the a
coefficient is renormalized by a factor smaller than 1:

_ Y7 (28 728

=qy— | == ! . 1
aL,—Qg ) ‘/3 \/3 (41d)

The laws Eq. (41) have been tested by numerical simula-
tions (Fig. 7). The simple formula Eq. (41c) gives the
correct behavior and order of magnitude for the
efficiency, while Eq. (41d), which needs the knowledge of
the brightness, is in very good agreement with the full nu-
merical simulations.

V. CONCLUSION

For high currents in the continuous-beam limit, we ex-
hibited laser-mode couplings that lead to a spectrum
larger than the classical sideband instability would let us
think. These couplings, among them the difference-
frequency generation, drive the nonlinear evolution of the
laser from the sideband emergence to a broad-spectrum

quasiequilibrium. We have provided a full perturbative
analysis up to the third order in the field that generalizes
the Madey theorem. Beyond the intricate formula ob-
tained from this expansion, we give quantitative estima-
tions for several of these third-order terms, but also a
more qualitative evaluation that establishes the validity
range of the linear and third-order terms.

Numerical simulation shows that the frequency genera-
tion mechanisms, exhibited within perturbation theory,
are responsible for a strong broadening of the laser spec-
trum. The asymptotic regime is quite “turbulent,” but
can be characterized by some constant mean values, as
the extracted efficiency p and the relative spectral width
2. These asymptotic mean values depend on the FEL pa-
rameters, but simulations exhibit a ‘“universal” constant:
the spectral brightness B=p /X, which is always found to
be close to B=0.8. Miscellaneous numerical experi-
ments were used to establish the stability of this behavior,
which suggests some structural properties of the high-
power FEL dynamics.

We made this idea more precise by providing a simple
model exhibiting and taking into account the chaotic
diffusion of particles in a broad spectrum potential. This
model is able to explain most of the average properties
obtained from heavy numerical simulations. The impor-
tant point in our interpretation is that the amplitudes of
the laser modes are large enough for the resonances to
overlap, so that the electrons come down in phase space
and lose enough energy to provide a large efficiency. It
leads to scaling laws very different from the standard
ones valid in the monochromatic regime. Now, the pic-
ture of FEL efficiency by chaotic diffusion should be
made more complete, by taking into account the self-
consistent coupling between the electrons and the laser.
This is necessary if one wants to understand the transient
regime, which has been, up to now, accessible only where
perturbation theory is relevant, as described in Sec. III,
and to derive a complete theoretical prediction for the
spectral brightness. This would also enable us to reach a
description of the dynamics of the laser phases and of the
fluctuations in the asymptotic regime.

Beyond the fact that high-power FEL’s appear to be
interesting devices for experimenting fundamental non-
linear dynamics, we showed with both theoretical
analysis and numerical simulations that a broad spectrum
provides an efficient way to reach higher efficiencies.
Indeed, Fig. 7 illustrates that the efficiency in the mono-
chromatic case is limited whatever the electronic current.
On the contrary, the efficiency in the broad-spectrum re-
gime grows like the square root of the electronic charge.

APPENDIX: MODELING IN THE 1D LIMIT

As expected, the multifrequency behavior of high-
power FEL’s is a very intricate problem. Then, for par-
ticular investigations, it is helpful to switch off the two-
dimensional dynamics. It is not possible to perform such
a crude approximation in a canonical way. This means
that the resultant set of equations depends on assump-
tions on the profile shape.

First, we need to use some radial form factor. Given
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any function F(x) defined on the positive real numbers
with F(0)=1, we define the following integrals (supposed
to converge):

1,=2 dx F(x), I,=2 dx x*F(x) ,
1 wfx>0x x F(x) 3 #fx>0x x x“F(x)

(A1)
I,=2 dx F(x), I,=2 dx x*FX(x) .
) fo>ox x F(x) 4 wfx>0x x x“F(x)
Two typical functions are commonly used: the Gaussian

F(x)=exp(—x?),

I,=m, I,=7/2, I,=m, I,=u7/4;
and the step

F(x)=1(0,»

I,=7, I,=7, I,=7w/2, I,=w/2.

Then, the electron-beam radial profile is given by

T(r)= 2 S F( VIL/Ir/r,), (A2)
17e
where r, is the root-mean-square radius
[2mrdrTin=1, [27rdrT(rir*=r? (A3)
Similarly, the laser beam profile is
v,
S(r=—=2FW\T,/L,r/r,), (A4)

Iyry
where r; is the root-mean-square radius

f21'rrdrS (r) f21'rrdrSz(r) =¢} . (A5)

We can now define a 1D electric field 6(z) by the on-axis
value of 6(r,z):

6(r,z)=6(2)S(r)/S(0) (A6)

The one-dimensional limit is obtained when the radial
scales go to infinity. Then, the Laplacian operator is
switched off and, for finite radial distances, one can use

F~1.

In a perfect 1D limit, the electric-field profile S(r) is
proportional to the electronic profile T'(r) [Eq. (2)]. Nev-
ertheless, due to the different definitions of the mean
values for the electron beam [Eq. (A3)] and the laser
beam [Eq. (AS5)], this implies different values for the rms
radii. Typically, r2=2r} for Gaussian profiles.

More generally, it is common to assume nondiffractive
beams with different profiles leading to a nontrivial over-
lap (ST):

(ST)= f21rr dr S(r)T(r) . (A7)

Since different scales may appear in S and T, it is not pos-
sible to give (ST) by using I, to I,. For a Gaussian
profile, we obtain

(STy="2 "L (A8)
Vi r2+2r}

With the above formula, the 1D model can be readily ob-
tained from Egs. (1)-(5). The averaged laser field [Eq.
(5)] is simply R,(z)=6,(z){ST)/S(0). The ratio
(ST /S(0) of the averaged to the on-axis laser field is a
nondimensional filling factor equal to 2r? /(r2+2r}) for
Gaussian profiles. The laser energy per unit of length is
now given by

1 m2? I3
E =— =3 6,.6*.
L mrp 77,14 % n“n

(A9)

2uy  e?
One has to define the on-axis electronic density n, as the
electron number per unit of volume n,=p,T(0)
=p,I/(r2I?). Then

2
e

idzé,,(z)=“0—aw7{]ne(exp(—i1/z,,)/27) , (A10)

9,y=T=a, % (ST)/S(0)Im | ¥ &,(z)expli,)/2y

(A11)
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